Part Number Hot Search : 
TH8055 OP165B N6117 M6322 LTC4069 IR3M02 NJL7502L T90S23
Product Description
Full Text Search
 

To Download LTC5591 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ltc5592 1 5592f if amp adc if amp rf 2300mhz to 2400mhz lna bias bias synth v ccif 3.3v or 5v v ccif v cc 3.3v v cc 22pf 22pf 22pf 1f 22pf 1f 22pf 150nh 150nh 1nf 1nf 190mhz saw 190mhz bpf image bpf rfa rfb ena lo ena (0v/3.3v) lo 2160mhz 2.2pf v cca v ccb ifa + ifa C ifb + ifb C 5592 ta01a lo amp lo amp enb enb (0v/3.3v) rf 2300mhz to 2400mhz lna 22pf image bpf if amp if amp adc 150nh 150nh 1nf 1nf 190mhz saw 190mhz bpf typical application features description dual 1.6ghz to 2.7ghz high dynamic range downconverting mixer the ltc ? 5592 is part of a family of dual-channel high dy- namic range, high gain downconverting mixers covering the 600mhz to 4.5ghz rf frequency range. the ltc5592 is optimized for 1.6ghz to 2.7ghz rf applications. the lo frequency must fall within the 1.7ghz to 2.5ghz range for optimum performance. a typical application is a lte or wimax receiver with a 2.3ghz to 2.7ghz rf input and low side lo. the ltc5592s high conversion gain and high dynamic range enable the use of lossy if filters in high selectivity receiver designs, while minimizing the total solution cost, board space and system-level variation. a low current mode is provided for additional power savings and each of the mixer channels has independent shutdown control. wideband lte receiver applications n conversion gain: 8.3db at 2.35ghz n iip3: 27.3dbm at 2.35ghz n noise figure: 9.8db at 2.35ghz n 15.3db nf under 5dbm blocking n high input p1db n 47db channel-to-channel isolation n 3.3v supply, 1.3w power consumption n low power mode for 0.8w consumption n independent channel shutdown control n 50 single-ended rf and lo inputs n lo input matched in all modes n 0dbm lo drive level n small package and solution size n C40c to 105c operation n 3g/4g wireless infrastructure diversity receivers (lte, w-cdma, td-scdma, wimax, gsm 1800) n mimo infrastructure diversity receivers n high dynamic range downmixer applications l , lt, ltc, ltm, linear technology and the linear logo are registered trademarks of linear technology corporation. all other trademarks are the property of their respective owners. high dynamic range dual downconverting mixer family part number rf range lo range ltc5590 600mhz to 1.7ghz 700mhz to 1.5ghz LTC5591 1.3ghz to 2.3ghz 1.4ghz to 2.1ghz ltc5592 1.6ghz to 2.7ghz 1.7ghz to 2.5ghz ltc5593 2.3ghz to 4.5ghz 2.1ghz to 4.2ghz wideband conversion gain and iip3 vs if frequency if frequency (mhz) 160 6 7 g c (db) iip3 (dbm) 9 10 11 13 14 12 170 190 5592 ta01b 8 180 200 210 220 21 23 25 27 28 29 22 24 26 lo = 2160mhz p lo = 0dbm rf = 2350 30mhz test circuit in figure 1 g c iip3 ltc5592 only, measured on evaluation board
ltc5592 2 5592f pin configuration absolute maximum ratings supply voltage (v cc ) ...............................................4.0v if supply voltage (v ccif ) .........................................5.5v enable voltage (ena, enb) ..............C0.3v to v cc + 0.3v bias adjust voltage (ifba, ifbb) ......C0.3v to v cc + 0.3v power select voltage (i sel ) .............C0.3v to v cc + 0.3v lo input power (1ghz to 3ghz) .............................9dbm lo input dc voltage ............................................... 0.1v rfa, rfb input power (1ghz to 3ghz) ................15dbm rfa, rfb input dc voltage .................................... 0.1v operating temperature range (t c ) ........ C40c to 105c storage temperature range .................. C65c to 150c junction temperature (t j ) .................................... 150c (note 1) 24 23 22 21 20 19 7 8 9 top view 25 gnd uh package 24-lead ( 5mm w 5mm ) plastic qfn 10 11 12 6 5 4 3 2 1 13 14 15 16 17 18 rfa cta gnd gnd ctb rfb i sel ena lo gnd enb gnd gnd ifgnda ifa + ifa C ifba v cca gnd ifgndb ifb + ifb C ifbb v ccb t jmax = 150c, jc = 7c/w exposed pad (pin 25) is gnd, must be soldered to pcb order information lead free finish tape and reel part marking package description temperature range ltc5592iuh#pbf ltc5592iuh#trpbf 5592 24-lead (5mm 5mm) plastic qfn C40c to 105c consult ltc marketing for parts specified with wider operating temperature ranges. consult ltc marketing for information on non-standard lead based finish parts. for more information on lead free part marking, go to: http://www.linear.com/leadfree/ for more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/ dc electrical characteristics parameter conditions min typ max units power supply requirements (v cca , v ccb , v ccifa , v ccifb ) v cca , v ccb supply voltage (pins 12, 19) 3.1 3.3 3.5 v v ccifa , v ccifb supply voltage (pins 9, 10, 21, 22) 3.1 3.3 5.3 v mixer supply current (pins 12, 19) both channels enabled 199 237 ma if amplifier supply current (pins 9, 10, 21, 22) both channels enabled 202 252 ma total supply current (pins 9, 10, 12, 19, 21, 22) both channels enabled 401 489 ma total supply current C shutdown ena = enb = low 500 a enable logic input (ena, enb) high = on, low = off ena, enb input high voltage (on) 2.5 v ena, enb input low voltage (off) 0.3 v ena, enb input current C0.3v to v cc + 0.3v C20 30 a turn on time 0.9 s turn off time 1s v cc = 3.3v, v ccif = 3.3v, ena = enb = high, i sel = low, t c = 25c, unless otherwise noted. test circuit shown in figure 1. (note 2)
ltc5592 3 5592f dc electrical characteristics v cc = 3.3v, v ccif = 3.3v, ena = enb = high, i sel = low, t c = 25c, unless otherwise noted. test circuit shown in figure 1. (note 2) parameter conditions min typ max units low power mode logic input (i sel ) high = low power, low = normal power mode i sel input high voltage 2.5 v i sel input low voltage 0.3 v i sel input current C0.3v to v cc + 0.3v C20 30 a low power mode current consumption (i sel = high) mixer supply current (pins 12, 19) both channels enabled 130 156 ma if amplifier supply current (pins 9, 10, 21, 22) both channels enabled 122 156 ma total supply current (pins 9, 10, 12, 19, 21, 22) both channels enabled 252 312 ma parameter conditions min typ max units conversion gain rf = 1950mhz rf = 2350mhz rf = 2550mhz 6.8 9.5 8.3 8.1 db db db conversion gain flatness rf = 2350 30mhz, lo = 2160mhz, if = 190 30mhz 0.14 db conversion gain vs temperature t c = C40oc to 105oc, rf = 2350mhz C0.006 db/c input 3rd order intercept rf = 1950mhz rf = 2350mhz rf = 2550mhz 24.0 26.3 27.3 26.3 dbm dbm dbm ssb noise figure rf = 1950mhz rf = 2350mhz rf = 2550mhz 9.4 9.8 9.9 db db db parameter conditions min typ max units lo input frequency range 1700 to 2500 mhz rf input frequency range low side lo high side lo 1900 to 2700 1600 to 2300 mhz mhz if output frequency range requires external matching 5 to 500 mhz rf input return loss z o = 50, 1600mhz to 2700mhz >13 db lo input return loss z o = 50, 1700mhz to 2500mhz >17 db if output impedance differential at 190mhz 379||2.2pf r||c lo input power f lo = 1700mhz to 2500mhz C4 0 6 dbm lo to rf leakage f lo = 1700mhz to 2500mhz 57 db rf to if isolation f rf = 1600mhz to 2700mhz >37 db channel-to-channel isolation f rf = 1600mhz to 2700mhz >47 db ac electrical characteristics v cc = 3.3v, v ccif = 3.3v, ena = enb = high, i sel = low, t c = 25c, p lo = 0dbm, p rf = C3dbm (f = 2mhz for two tone iip3 tests), unless otherwise noted. test circuit shown in figure 1. (notes 2, 3, 4) low side lo downmixer application: i sel = low, rf = 1900mhz to 2700mhz, if = 190mhz, f lo = f rf C f if
ltc5592 4 5592f parameter conditions min typ max units conversion gain rf = 2350mhz 7.1 db input 3rd order intercept rf = 2350mhz 22.3 dbm ssb noise figure rf = 2350mhz 10.2 db input 1db compression rf = 2350mhz, v ccif = 3.3v rf = 2350mhz, v ccif = 5v 11.3 12.6 dbm dbm note 1: stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. exposure to any absolute maximum rating condition for extended periods may affect device reliability and lifetime. note 2: the ltc5592 is guaranteed functional over the case operating temperature range of C40c to 105c ( jc = 7c/w). note 3: ssb noise figure measured with a small-signal noise source, bandpass filter and 6db matching pad on rf input, bandpass filter and 6db matching pad on the lo input, and no other rf signals applied. note 4: channel a to channel b isolation is measured as the relative if output power of channel b to channel a, with the rf input signal applied to channel a. the rf input of channel b is 50 terminated and both mixers are enabled. ac electrical characteristics v cc = 3.3v, v ccif = 3.3v, ena = enb = high, t c = 25c, p lo = 0dbm, p rf = C3dbm (f = 2mhz for two tone iip3 tests), unless otherwise noted. test circuit shown in figure 1. (notes 2, 3) parameter conditions min typ max units ssb noise figure under blocking f rf = 2400mhz, f lo = 2210mhz, f block = 2500mhz p block = 5dbm p block = 10dbm 15.3 21.2 db db 2rf-2lo output spurious product (f rf = f lo + f if /2) f rf = 2255mhz at C10dbm, f lo = 2160mhz, f if = 190mhz C68 dbc 3rf-3lo output spurious product (f rf = f lo + f if /3) f rf = 2223.33mhz at C10dbm, f lo = 2160mhz, f if = 190mhz C74 dbc input 1db compression f rf = 2350mhz, v ccif = 3.3v f rf = 2350mhz, v ccif = 5v 11 14.6 dbm dbm low side lo downmixer application: i sel = low, rf = 1900mhz to 2700mhz, if = 190mhz, f lo = f rf C f if low power mode, low side lo downmixer application: i sel = high, rf = 1900mhz to 2700mhz, if = 190mhz, f lo = f rf C f if parameter conditions min typ max units conversion gain rf = 1750mhz rf = 1950mhz rf = 2150mhz 9.1 8.7 8.3 db db db conversion gain flatness rf = 1950 30mhz, lo = 2140mhz, if = 190 30mhz 0.33 db conversion gain vs temperature t c = C40oc to 105oc, rf = 1900mhz C0.005 db/c input 3rd order intercept rf = 1750mhz rf = 1950mhz rf = 2150mhz 25.3 25.4 25.1 dbm dbm dbm ssb noise figure rf = 1750mhz rf = 1950mhz rf = 2150mhz 9.2 9.8 10.4 db db db ssb noise figure under blocking f rf = 1950mhz, f lo = 2140mhz, f block = 1850mhz p block = 5dbm p block = 10dbm 16.5 22.7 db db 2lo-2rf output spurious product (f rf = f lo C f if /2) f rf = 2045mhz at C10dbm, f lo = 2140mhz, f if = 190mhz C68 dbc 3lo-3rf output spurious product (f rf = f lo C f if /3) f rf = 2076.67mhz at C10dbm, f lo = 2140mhz, f if = 190mhz C75 dbc input 1db compression rf = 1950mhz, v ccif = 3.3v rf = 1950mhz, v ccif = 5v 10.6 14.0 dbm dbm high side lo downmixer application: i sel = low, rf = 1600mhz to 2300mhz, if = 190mhz, f lo = f rf + f if
ltc5592 5 5592f rf frequency (mhz) 1900 35 isolation (db) 45 2300 5592 g03 40 2100 2500 2700 55 50 C40c 25c 85c conversion gain and iip3 vs rf frequency ssb nf vs rf frequency channel isolation vs rf frequency 1950mhz conversion gain, iip3 and nf vs lo power 2350mhz conversion gain, iip3 and nf vs lo power 2550mhz conversion gain, iip3 and nf vs lo power low side lo typical ac performance characteristics v cc = 3.3v, v ccif = 3.3v, ena = enb = high, i sel = low, t c = 25c, p lo = 0dbm, p rf = C3dbm (C3dbm/tone for two-tone iip3 tests, f = 2mhz), if = 190mhz, unless otherwise noted. test circuit shown in figure 1. conversion gain, iip3 and nf vs supply voltage (single supply) conversion gain, iip3 and nf vs supply voltage (dual supply) conversion gain, iip3 and rf input p1db vs temperature rf frequency (mhz) 1900 6 8 10 iip3 (dbm) g c (db) 14 16 18 24 22 20 2000 2200 5592 g01 12 2100 2300 2400 2500 2600 2700 28 26 6 7 8 10 11 12 15 14 13 9 17 16 C40c 25c 85c 105c iip3 g c 6 7 8 ssb nf (db) 10 11 12 15 14 13 5592 g02 9 16 C40c 25c 85c 105c rf frequency (mhz) 1900 2000 2200 2100 2300 2400 2500 2600 2700 lo input power (dbm) C6 6 8 10 g c (db), iip3 (dbm) ssb nf (db) 14 16 18 24 22 20 26 C4 0 5592 g04 12 C2 2 4 6 28 0 8 12 16 4 20 2 10 14 18 6 22 C40c 25c 85c nf g c iip3 lo input power (dbm) C6 6 8 10 g c (db), iip3 (dbm) ssb nf (db) 14 16 18 24 22 20 26 C4 0 5592 g05 12 C2 2 4 6 28 0 8 12 16 4 20 2 10 14 18 6 22 C40c 25c 85c g c nf iip3 lo input power (dbm) C6 6 8 10 g c (db), iip3 (dbm) ssb nf (db) 14 16 18 24 22 20 26 C4 0 5592 g06 12 C2 2 4 6 28 0 8 12 16 4 20 2 10 14 18 6 22 C40c 25c 85c iip3 g c nf v ccif supply voltage (v) 3 6 8 10 g c (db), iip3 (dbm) ssb nf (db) 14 16 18 24 22 20 26 3.5 4.5 5592 g08 12 4 5 5.5 30 28 0 8 12 16 4 20 2 10 14 18 6 24 22 C40c 25c 85c iip3 g c nf rf = 2350mhz v cc = 3.3v case temperature (c) C40 6 8 10 g c (db), iip3 (dbm), p1db (dbm) 14 16 18 24 22 20 26 C10 50 5592 g09 12 20 80 110 30 28 iip3 p1db g c v ccif = 3.3v v ccif = 5v rf = 2350mhz v cc , v ccif supply voltage (v) 3 6 8 10 g c (db), iip3 (dbm) ssb nf (db) 14 16 18 24 22 20 26 3.1 3.3 5592 g07 12 3.2 3.4 3.5 3.6 28 0 8 12 16 4 20 2 10 14 18 6 22 C40c 25c 85c g c nf iip3 rf = 2350mhz v cc = v ccif
ltc5592 6 5592f ssb noise figure vs rf blocker power lo leakage vs lo frequency rf isolation vs rf frequency conversion gain distribution iip3 distribution ssb noise figure distribution 2-tone if output power, im3 and im5 vs rf input power single-tone if output power, 2 2 and 3 3 spurs vs rf input power 2 2 and 3 3 spur suppression vs lo input power low side lo typical ac performance characteristics v cc = 3.3v, v ccif = 3.3v, ena = enb = high, i sel = low, t c = 25c, p lo = 0dbm, p rf = C3dbm (C3dbm/tone for two-tone iip3 tests, f = 2mhz), if = 190mhz, unless otherwise noted. test circuit shown in figure 1. rf frequency (mhz) 1500 0 10 20 isolation (db) 30 50 60 40 1700 2100 1900 2300 5592 g15 2500 2700 70 rf-if rf-lo gain (db) 7.5 0 5 10 distribution (%) 15 25 20 88.5 5592 g16 9 rf = 2350mhz 85c 25c C40c noise figure (db) 7 0 15 10 5 20 distribution (%) 25 35 30 810 9 5592 g18 12 11 50 40 45 rf = 2350mhz 85c 25c C40c rf input power (dbm/tone) C12 C80 C70 C50 C60 output power (dbm/tone) C40 C30 C20 C10 10 0 C9 C3 0 5592 g10 C6 3 6 20 if out rf1 = 2349mhz rf2 = 2351mhz lo = 2160mhz im5 im3 rf input power (dbm) C12 C80 C70 C60 output power (dbm) C40 C30 0 C10 C20 10 C9 C3 5592 g11 C50 C6 03 6 20 if out (rf = 2350mhz) lo = 2160mhz 3rf-3lo (rf = 2223.33mhz) 2rf-2lo (rf = 2255mhz) lo input power (dbm) C6 C85 C80 relative spur level (dbc) C75 C65 C70 C3 0 5592 g12 3 6 C55 C60 if = 190mhz p rf = C10dbm lo = 2160mhz 3rf-3lo (rf = 2223.33mhz) 2rf-2lo (rf = 2255mhz) iip3 (dbm) 24.5 0 15 10 5 20 distribution (%) 25 35 30 25.5 27.5 26.5 5592 g17 28.5 40 rf = 2350mhz 85c 25c C40c rf blocker power (dbm) C20 8 10 12 14 ssb nf (db) 16 22 20 18 C15 C5 C10 0 5592 g13 5 10 24 p lo = C3dbm p lo = 0dbm p lo = 3dbm p lo = 6dbm rf = 2400mhz blocker = 2500mhz lo frequency (mhz) 1700 C50 C40 lo leakage (dbm) C30 C10 C20 1800 2000 1900 2100 5592 g14 2200 2500 2300 2400 0 lo-if lo-rf
ltc5592 7 5592f typical ac performance characteristics conversion gain and iip3 vs rf frequency ssb nf vs rf frequency 2-tone if output power, im3 and im5 vs rf input power 1950mhz conversion gain, iip3 and nf vs lo power 2350mhz conversion gain, iip3 and nf vs lo power 2550mhz conversion gain, iip3 and nf vs lo power low power mode, low side lo v cc = 3.3v, v ccif = 3.3v, ena = enb = high, i sel = high, t c = 25c, p lo = 0dbm, p rf = C3dbm (C3dbm/tone for two-tone iip3 tests, f = 2mhz), if = 190mhz, unless otherwise noted. test circuit shown in figure 1. conversion gain, iip3 and nf vs supply voltage (single supply) conversion gain, iip3 and nf vs supply voltage (dual supply) conversion gain, iip3 and rf input p1db vs temperature 6 8 7 ssb nf (db) 10 9 12 11 14 13 5592 g20 16 15 C40c 25c 85c 105c rf frequency (mhz) 1900 2000 2200 2100 2300 2400 2500 2600 2700 5 7 9 iip3 (dbm) g c (db) 13 15 17 23 21 19 5592 g19 11 25 5 9 11 13 7 15 6 10 12 14 8 C40c 25c 85c 105c iip3 g c rf frequency (mhz) 1900 2000 2200 2100 2300 2400 2500 2600 2700 lo input power (dbm) C6 5 7 9 g c (db), iip3 (dbm) ssb nf (db) 13 15 17 25 23 21 19 C4 0 5592 g22 11 C2 2 4 6 8 12 16 4 20 0 2 10 14 18 6 iip3 g c nf C40c 25c 85c v cc , v ccif supply voltage (v) 3 5 7 9 11 g c (db), iip3 (dbm) ssb nf (db) 15 17 19 25 23 21 3.1 3.3 5592 g25 13 3.2 3.4 3.5 3.6 8 12 16 4 20 0 2 10 14 18 6 C40c 25c 85c iip3 g c nf v cc = v ccif rf = 2350mhz lo input power (dbm) C6 5 7 9 g c (db), iip3 (dbm) ssb nf (db) 13 15 17 25 23 21 19 C4 0 5592 g23 11 C2 2 4 6 8 12 16 4 20 0 2 10 14 18 6 C40c 25c 85c iip3 g c nf lo input power (dbm) C6 5 9 7 11 g c (db), iip3 (dbm) ssb nf (db) 15 17 19 25 23 21 C4 0 5592 g24 13 C2 2 4 6 8 12 16 4 20 0 2 10 14 18 6 C40c 25c 85c iip3 g c nf v ccif supply voltage (v) 3 5 7 9 11 g c (db), iip3 (dbm) ssb nf (db) 15 17 19 25 23 21 3.5 5592 g26 13 4 4.5 5 5.5 8 12 16 4 20 0 2 10 14 18 6 C40c 25c 85c iip3 g c nf v cc = 3.3v rf = 2350mhz case temperature (c) C40 5 7 9 11 g c (db), iip3 (dbm), p1db (dbm) 15 17 19 25 23 21 C10 50 5592 g27 13 20 80 110 v ccif = 3.3v v ccif = 5v g c p1db iip3 rf = 2350mhz rf input power (dbm/tone) C12 C80 C60 C40 C20 output power (dbm/tone) C9 C3 5592 g21 C6 0 3 6 20 0 im5 if out rf1 = 2349mhz rf2 = 2351mhz lo = 2160mhz im3
ltc5592 8 5592f typical ac performance characteristics conversion gain and iip3 vs rf frequency ssb nf vs rf frequency channel isolation vs rf frequency 1750mhz conversion gain, iip3 and nf vs lo power 1950mhz conversion gain, iip3 and nf vs lo power 2150mhz conversion gain, iip3 and nf vs lo power high side lo v cc = 3.3v, v ccif = 3.3v, ena = enb = high, i sel = low, t c = 25c, p lo = 0dbm, p rf = C3dbm (C3dbm/tone for two-tone iip3 tests, f = 2mhz), if = 190mhz, unless otherwise noted. test circuit shown in figure 1. conversion gain, iip3 and nf vs supply voltage (single supply) conversion gain, iip3 and nf vs supply voltage (dual supply) conversion gain, iip3 and rf input p1db vs temperature rf frequency (mhz) 1600 8 6 10 12 iip3 (dbm) g c (db) 16 18 20 26 28 24 22 1700 1900 5592 g28 14 6 7 8 10 11 12 15 16 17 14 13 9 1800 2000 2100 2300 2200 iip3 g c C40c 25c 85c 105c lo input power (dbm) C6 g c (db), iip3 (dbm) ssb nf (db) C4 0 5592 g31 6 14 12 10 8 20 18 16 22 26 28 24 0 4 2 8 6 12 10 20 18 22 iip3 16 14 C2 24 6 C40c 25c 85c g c nf lo input power (dbm) C6 g c (db), iip3 (dbm) ssb nf (db) C4 0 5592 g32 6 10 8 14 12 16 18 24 26 28 22 20 0 2 4 8 6 12 10 20 18 22 iip3 16 14 C2 24 6 C40c 25c 85c g c nf lo input power (dbm) C6 g c (db), iip3 (dbm) ssb nf (db) C4 0 5592 g33 6 12 10 8 16 14 18 22 20 26 28 24 0 2 4 8 6 12 10 20 18 22 iip3 16 14 C2 24 6 C40c 25c 85c nf g c v cc , v ccif supply voltage (v) 3 g c (db), iip3 (dbm) ssb nf (db) 3.1 3.2 5592 g34 6 8 10 12 16 14 18 26 24 28 22 20 0 2 8 6 4 12 10 18 20 22 iip3 16 14 3.3 3.4 3.5 3.6 C40c 25c 85c g c nf v cc = v ccif rf = 1950mhz v ccif supply voltage (v) 3 g c (db), iip3 (dbm) ssb nf (db) 3.5 5592 g35 6 10 8 14 12 16 18 26 24 28 20 22 0 2 6 4 8 12 10 20 18 22 iip3 16 14 4 4.5 5 5.5 C40c 25c 85c nf g c v cc = 3.3v rf = 1950mhz case temperature (c) C40 g c (db), iip3 (dbm), p1db (dbm) C10 5592 g36 6 8 12 10 14 18 16 26 24 28 20 22 iip3 20 50 80 110 v ccif = 3.3v v ccif = 5v g c p1db rf = 1950mhz rf frequency (mhz) 1600 ssb nf (db) 1700 1900 5592 g29 6 7 8 10 11 12 15 16 14 13 9 1800 2000 2100 2300 2200 C40c 25c 85c 105c rf frequency (mhz) 1600 isolation (db) 1700 1900 5592 g30 35 40 50 55 70 65 60 45 1800 2000 2100 2300 2200 C40c 25c 85c
ltc5592 9 5592f typical dc performance characteristics v cc supply current vs supply voltage (mixer + lo amplifier) v ccif supply current vs supply voltage (if amplifier) total supply current vs temperature (v cc + v ccif ) v cc supply current vs supply voltage (mixer + lo amplifier) v ccif supply current vs supply voltage (if amplifier) total supply current vs temperature (v cc + v ccif ) i sel = high, ena = enb = high, test circuit shown in figure 1. i sel = low, ena = enb = high, test circuit shown in figure 1. v cc supply voltage (v) 3 supply current (ma) 3.1 5592 g37 190 192 194 198 200 202 204 196 206 3.2 3.3 3.4 3.5 3.6 105c 85c 25c C40c v ccif = v cc v ccif supply voltage (v) 3 supply current (ma) 3.3 5592 g38 130 150 170 190 210 230 250 270 3.6 3.9 4.2 4.5 4.8 5.1 5.4 v cc = 3.3v 105c 85c 25c C40c case temperature (c) C40 supply current (ma) C10 5592 g39 280 300 320 340 360 440 420 400 380 460 480 20 50 80 110 v cc = 3.3v, v ccif = 5v (dual supply) v cc = v ccif = 3.3v (single supply) v cc supply voltage (v) 3 supply current (ma) 3.1 5592 g40 124 126 128 130 132 134 136 3.2 3.3 3.4 3.5 3.6 105c 85c 25c C40c v ccif = v cc case temperature (c) C40 supply current (ma) C10 5592 g42 210 250 240 230 220 260 280 270 290 300 20 50 80 110 v cc = 3.3v, v ccif = 5v (dual supply) v cc = v ccif = 3.3v (single supply) v ccif supply voltage (v) 3 supply current (ma) 3.3 5592 g41 80 110 100 90 130 120 140 160 150 170 3.6 3.9 4.2 4.5 4.8 5.1 5.4 v cc = 3.3v 105c 85c 25c C40c
ltc5592 10 5592f pin functions rfa, rfb (pins 1, 6): single-ended rf inputs for chan- nels a and b. these pins are internally connected to the primary sides of the rf input transformers, which have low dc resistance to ground. series dc-blocking capaci- tors should be used to avoid damage to the integrated transformer when dc voltage is present at the rf inputs. the rf inputs are impedance matched when the lo input is driven with a 06dbm source between 1.7ghz and 2.5ghz and the channels are enabled. cta, ctb (pins 2, 5): rf transformer secondary center- tap on channels a and b. these pins may require bypass capacitors to ground to optimize iip3 performance. each pin has an internally generated bias voltage of 1.2v and must be dc-isolated from ground and v cc . gnd (pins 3, 4, 7, 13, 15, 24, exposed pad pin 25): ground. these pins must be soldered to the rf ground plane on the circuit board. the exposed pad metal of the package provides both electrical contact to ground and good thermal contact to the printed circuit board. ifgndb, ifgnda (pins 8, 23): dc ground returns for the if amplifiers. these pins must be connected to ground to complete the dc current paths for the if amplifiers. chip inductors may be used to tune lo-if and rf-if leakage. typical dc current is 101ma for each pin. ifb + , ifb C , ifa C , ifa + (pins 9, 10, 21, 22): open-collector differential outputs for the if amplifiers of channels b and a. these pins must be connected to a dc supply through impedance matching inductors, or transformer center-taps. typical dc current consumption is 50.5ma into each pin. ifbb, ifba (pins 11, 20): bias adjust pins for the if amplifiers. these pins allow independent adjustment of the internal if buffer currents for channels b and a, respectively. the typical dc voltage on these pins is 2.2v. if not used, these pins must be dc isolated from ground and v cc . v ccb and v cca (pins 12, 19): power supply pins for the lo buffers and bias circuits. these pins must be con- nected to a regulated 3.3v supply with bypass capacitors located close to the pins. typical current consumption is 99.5ma per pin. enb, ena (pins 14, 17): enable pins. these pins allow channels b and a, respectively, to be independently en- abled. an applied voltage of greater than 2.5v activates the associated channel while a voltage of less than 0.3v disables the channel. typical input current is less than 10a. these pins must not be allowed to float. lo (pin 16): single-ended local oscillator input. this pin is internally connected to the primary side of the lo input transformer and has a low dc resistance to ground. series dc-blocking capacitors should be used to avoid damage to the integrated transformer when dc voltage present at lo input. the lo input is internally matched to 50 for all states of ena and enb. i sel (pin 18): low power select pin. when this pin is pulled low (<0.3v), both mixer channels are biased at the normal current level for best rf performance. when greater than 2.5v is applied, both channels operate at reduced current, which provides reasonable performance at lower power consumption. this pin must not be allowed to float.
ltc5592 11 5592f block diagram 5592 bd bias bias gnd ena i sel lo v ccb ifbb v cca ifba ifb C ifb + ifa C ifa + ifgndb ifgnda gnd rfb lo amp lo amp enb gnd if amp 11 10 9 12 14 13 gnd 15 16 17 18 6 8 7 ctb 5 gnd 4 gnd 3 cta 2 rfa 1 if amp 22 21 20 19 23 24
ltc5592 12 5592f test circuit l1, l2 vs if frequencies if (mhz) l1, l2 (nh) 140 270 190 150 240 100 300 56 380 33 450 22 ref des value size vendor c1a, c1b 22pf 0402 avx c2 2.2pf 0402 avx c3a, c3b c5a, c5b 22pf 0402 avx c4, c6 1f 0603 avx c7a, c7b 1000pf 0402 avx c8a, c8b 4.7pf 0402 avx l1a, l1b l2a, l2b 150nh 0603 coilcraft t1a, t1b tc4-1w-7aln+ mini-circuits figure 1. standard downmixer test circuit schematic (190mhz if) rf gnd gnd bias dc1710a evaluation board stack-up (nelco n4000-13) 0.015 0.015 0.062 4:1 t1a ifa 50 c7a l2a l1a c5a c6 c3a c4 ltc5592 25 gnd 1 19 20 21 22 23 24 12 11 10 9 8 7 lo 50 17 18 16 15 14 c2 5 6 13 4 3 rfa 50 v ccif 3.3v to 5v c1a c8a rfb 50 c1b 2 ifgnda gnd ifa + ifa C ifba lo gnd gnd i sel enb ena v cca ifgndb gnd ifb + ifb C ifbb v ccb rfa cta gnd gnd ctb rfb 5592 tc01 4:1 t1b ifb 50 c5b c3b c7b l1b l2b isel (0v/3.3v) v cc 3.3v ena (0v/3.3v) enb (0v/3.3v) c8b
ltc5592 13 5592f introduction the ltc5592 consists of two identical mixer channels driven by a common lo input signal. each high linearity mixer consists of a passive double-balanced mixer core, if buffer amplifier, lo buffer amplifier and bias/enable circuits. see the pin functions and block diagram sections for a description of each pin. each of the mixers can be shutdown independently to reduce power consumption and low current mode can be selected that allows a trade-off between performance and power consumption. the rf and lo inputs are single-ended and are internally matched to 50. low side or high side lo injection can be used. the if outputs are differential. the evaluation circuit, shown in figure 1, utilizes bandpass if output matching and an if transformer to realize a 50 single-ended if output. the evaluation board layout is shown in figure 2. applications information figure 2. evaluation board layout (dc1710a) the secondary winding of the rf transformer is inter- nally connected to the channel a passive mixer core. the center-tap of the transformer secondary is connected to pin 2 (cta) to allow the connection of bypass capacitor, c8a. the value of c8a can be adjusted to improve channel isolation at specific rf frequencies with minor impact to conversion gain, linearity and noise performance. when used, it should be located within 2mm of pin 2 for proper high frequency decoupling. the nominal dc voltage on the cta pin is 1.2v. for the rf inputs to be properly matched, the appropriate lo signal must be applied to the lo input. a broadband input match is realized with c1a = 22pf. the measured input return loss is shown in figure 4 for lo frequencies of 1.7ghz, 2.16ghz and 2.5ghz. these lo frequencies correspond to lower, middle and upper values in the lo range. as shown in figure 4, the rf input impedance is dependent on lo frequency, although a single value of c1a is adequate to cover the 1.7ghz to 2.5ghz rf band. rf inputs the rf inputs of channels a and b are identical. the rf input of channel a, shown in figure 3, is connected to the primary winding of an integrated transformer. a 50 match is realized when a series external capacitor, c1a, is con- nected to the rf input. c1a is also needed for dc blocking if the source has dc voltage present, since the primary side of the rf transformer is internally dc-grounded. the dc resistance of the primary is approximately 3.9. figure 3. channel a rf input schematic figure 4. rf port return loss 5592 f02 ltc5592 c1a c8a rfa cta rfa to channel a mixer 1 2 5592 f03 frequency (mhz) 1500 C25 C20 return loss (db) C15 C10 0 C5 1700 5592 f04 1900 2100 2300 2500 2700 lo = 1700mhz lo = 2160mhz lo = 2500mhz
ltc5592 14 5592f the rf input impedance and input reflection coefficient, versus rf frequency, are listed in table 1. the reference plane for this data is pin 1 of the ic, with no external matching, and the lo is driven at 2.16ghz. table 1. rf input impedance and s11 (at pin 1, no external matching, f lo = 2.16ghz) frequency (ghz) rf input impedance s11 mag angle 1.6 66.0 + j6.8 0.15 20 1.7 62.4 + j0.5 0.11 2 1.8 57.9 C j3.8 0.08 C24 1.9 53.2 C j6.1 0.07 C59 2.0 48.5 C j8.8 0.09 C95 2.1 40.6 C j9.3 0.14 C130 2.2 35.0 C j0.1 0.18 C180 2.3 39.3 + j3.7 0.13 C201 2.4 41.2 + j3.9 0.11 C207 2.5 41.7 + j4.3 0.10 C211 2.6 42.8 + j4.1 0.09 C212 2.7 44.1 + j3.6 0.07 C213 applications information figure 5. lo input schematic lo input the lo input, shown in figure 5, is connected to the primary winding of an integrated transformer. a 50 impedance match is realized at the lo port by adding an external series capacitor, c2. this capacitor is also needed for dc blocking if the lo source has dc voltage present, since the primary side of the lo transformer is dc-grounded internally. the dc resistance of the primary is approximately 1.8. the secondary of the transformer drives a pair of high speed limiting differential amplifiers for channels a and b. the ltc5592s lo amplifiers are optimized for the 1.7ghz to 2.5ghz lo frequency range; however, lo frequencies outside this frequency range may be used with degraded performance. the lo port is always 50 matched when v cc is applied, even when one or both of the channels is disabled. this helps to reduce frequency pulling of the lo source when the mixer is switched between different operating states. figure 6 illustrates the lo port return loss for the different operating modes. figure 6. lo input return loss the nominal lo input level is 0dbm, though the limiting amplifiers will deliver excellent performance over a 6dbm input power range. table 2 lists the lo input impedance and input reflection coefficient versus frequency. table 2. lo input impedance vs frequency (at pin 16, no external matching, ena = enb = high) frequency (ghz) input impedance s11 mag angle 1.7 46.4 + j34.4 0.34 76 1.8 47.0 + j31.0 0.31 78 1.9 46.5 + j28.2 0.28 81 2.0 44.4 + j26.8 0.28 86 2.1 43.1 + j26.0 0.28 89 2.2 41.8 + j26.2 0.29 91 2.3 40.4 + j27.4 0.31 92 2.4 38.8 + j28.5 0.33 94 2.5 38.0 + j30.4 0.35 93 frequency (mhz) 1700 C30 C20 C25 return loss (db) C15 C10 0 C5 5592 f06 1900 2100 2300 2500 both channels on one channel on both channels off lo to mixer b ltc5592 i sel 5592 f05 18 lo 16 17 ena enb c2 14 bias bias to mixer a
ltc5592 15 5592f if outputs the if amplifiers in channels a and b are identical. the if amplifier for channel a, shown in figure 7, has differen- tial open collector outputs (ifa + and ifa C ), a dc ground return pin (ifgnda), and a pin for adjusting the internal bias (ifba). the if outputs must be biased at the sup- ply voltage (v ccifa ), which is applied through matching inductors l1a and l2a. alternatively, the if outputs can be biased through the center tap of a transformer (t1a). the common node of l1a and l2a can be connected to the center tap of the transformer. each if output pin draws approximately 50.5ma of dc supply current (101ma total). an external load resistor, r2a, can be used to improve impedance matching if desired. ifgnda (pin 23) must be grounded or the amplifier will not draw dc current. inductor l3a may improve lo-if and rf-if leakage performance in some applications, but is otherwise not necessary. inductors should have small resistance for dc. high dc resistance in l3a will reduce the if amplifier supply current, which will degrade rf performance. applications information for optimum single-ended performance, the differential if output must be combined through an external if transformer or a discrete if balun circuit. the evaluation board (see figures 1 and 2) uses a 4:1 if transformer for impedance transformation and differential to single-ended conversion. it is also possible to eliminate the if transformer and drive differential filters or amplifiers directly. the if output impedance can be modeled as 379 in parallel with 2.2pf. the equivalent small-signal model, including bondwire inductance, is shown in figure 8. frequency-dependent differential if output impedance is listed in table 3. this data is referenced to the package pins (with no external components) and includes the ef- fects of ic and package parasitics. figure 7. if amplifier schematic with bandpass match figure 8. if output small-signal model bandpass if matching the bandpass if matching configuration, shown in figures 1 and 7, is best suited for if frequencies in the 90mhz to 500mhz range. resistor r2a may be used to reduce the if output resistance for greater bandwidth and inductors l1a and l2a resonate with the internal if output capacitance at the desired if frequency. the value of l1a, l2a can be estimated as follows: l1a = l2a = 1 2  f if () 2 ?2?c if     where c if is the internal if capacitance (listed in table 3). 22 21 ifa + if a C 0.9nh 0.9nh r if c if ltc5592 5592 f08 4:1 t1a ifa c7a l2a l1a c5a r2a l3a (or short) v ccifa 20 21 22 23 if amp bias 101ma 4ma ifba v cca ltc5592 ignda ifa C ifa + r1a (option to reduce dc power) 5592 f07
ltc5592 16 5592f values of l1a and l2a are tabulated in figure 1 for vari- ous if frequencies. the measured if output return loss for bandpass if matching is plotted in figure 9. table 3. if output impedance vs frequency frequency (mhz) differential output impedance (r if || x if (c if )) 90 403 || C j610 (2.9pf) 140 384 || C j474 (2.4pf) 190 379 || C j381 (2.2pf) 240 380 || C j316 (2.1pf) 300 377 || C j253 (2.1pf) 380 376 || C j210 (2.0pf) 450 360 || C j177 (2.0pf) applications information figure 9. if output return loss with bandpass matching board (see figure 2) has been laid out to accommodate this matching topology with only minor modifications. if amplifier bias the if amplifier delivers excellent performance with v ccif = 3.3v, which allows a single supply to be used for v cc and v ccif . at v ccif = 3.3v, the rf input p1db of the mixer is limited by the output voltage swing. for higher p1db, in this case, resistor r2a (figure 7) can be used to reduce the output impedance and thus the voltage swing, thus improving p1db. the trade-off for improved p1db will be lower conversion gain. with v ccif increased to 5v the p1db increases by over 3db, at the expense of higher power consumption. mixer p1db performance at 1950mhz and 2350mhz is tabulated in table 4 for v ccif values of 3.3v and 5v. for the highest conversion gain, high-q wire-wound chip inductors are recommended for l1a and l2a. low cost multilayer chip inductors may be substituted, with a slight reduction in conversion gain. figure 10. if output with lowpass matching figure 11. if output return loss with lowpass matching lowpass if matching for if frequencies below 90mhz, the inductance values become unreasonably high and the lowpass topology shown in figure 10 is preferred. this topology also can provide improved rf to if and lo to if isolation. v ccifa is supplied through the center tap of the 4:1 transformer. a lowpass impedance transformation is realized by shunt elements r2a and c9a (in parallel with the internal rif and cif), and series inductors l1a and l2a. resistor r2a is used to reduce the if output resistance for greater bandwidth, or it can be omitted for the highest conver- sion gain. the final impedance transformation to 50 is realized by transformer t1a. the measured return loss is shown in figure 11 for different values of inductance (c9a = open). the case with 82nh inductors and a 1k load resistor (r2a) is also shown. the ltc5592 demo 4:1 t1a ifa 50 v ccifa 3.1 to 5.3v c5a 21 22 ifa C ifa + c6 c9a r2a l1a l2a ltc5592 5592 f10 frequency (mhz) 50 C25 C20 return loss (db) C15 C10 0 C5 100 300 5592 f09 150 200 250 350 400 450 500 270nh 150nh 100nh 56nh 33nh 22nh return loss (db) C20 C25 C15 C10 0 C5 frequency (mhz) 50 0 100 150 5592 f11 200 250 68nh 100nh 180nh 82nh + 1k
ltc5592 17 5592f applications information table 4. performance comparison with v ccif = 3.3v and 5v (rf = 1950mhz, high side lo, if = 190mhz) v ccif (v) r2a () i ccif (ma) g c (db) p1db (dbm) iip3 (dbm) nf (db) 3.3 open 202 8.7 10.6 25.4 9.8 1k 202 7.5 11.3 25.4 9.9 5 open 209 8.7 14.0 25.5 9.9 (rf = 2350mhz, low side lo, if = 190mhz) v ccif (v) r2a () i ccif (ma) g c (db) p1db (dbm) iip3 (dbm) nf (db) 3.3 open 202 8.3 11.0 27.3 9.8 1k 202 7.1 11.8 27.5 9.8 5 open 209 8.1 14.6 28.0 10.0 the ifba pin (pin 20) is available for reducing the dc current consumption of the if amplifier, at the expense of iip3. the nominal dc voltage at pin 20 is 2.1v, and this pin should be left open-circuited for optimum performance. the internal bias circuit produces a 4ma reference for the if amplifier, which causes the amplifier to draw approxi- mately 101ma. if resistor r1a is connected to pin 20 as shown in figure 7, a portion of the reference current can be shunted to ground, resulting in reduced if amplifier current. for example, r1a = 1k will shunt away 1.5ma from pin 20 and the if amplifier current will be reduced by 25% to approximately 75.5ma. table 5 summarizes rf performance versus if amplifier current. table 5. mixer performance with reduced if amplifier current rf = 1950mhz, high side lo, if = 190mhz, v cc = v ccif = 3.3v r1 i ccif (ma) g c (db) iip3 (dbm) p1db (dbm) nf (db) open 202 8.7 25.4 10.6 9.8 4.7k 184 8.5 25.2 10.8 9.8 2.2k 170 8.4 24.8 10.9 9.7 1k 151 8.1 24.4 11.1 9.8 rf = 2350mhz, low side lo, if = 190mhz, v cc = v ccif = 3.3v r1 i ccif (ma) g c (db) iip3 (dbm) p1db (dbm) nf (db) open 202 8.3 27.3 11.0 9.8 4.7k 184 8.1 26.8 11.2 9.8 2.2k 170 8.0 26.2 11.2 9.8 1k 151 7.7 25.4 11.3 9.8 low power mode both mixer channels can be set to low power mode us- ing the i sel pin. this allows flexibility to select a reduced current mode of operation when lower rf performance is acceptable, reducing power consumption by 37%. figure 12 shows a simplified schematic of the i sel pin interface. when i sel is set low (<0.3v), both channels operate at nominal dc current. when i sel is set high (>2.5v), the dc current in both channels is reduced, thus reducing power consumption. the performance in low power mode and normal power mode are compared in table 6. figure 12. i sel interface schematic table 6. performance comparison between different power modes rf = 1950mhz, high side lo, if = 190mhz, v cc = v ccif = 3.3v i sel i total (ma) g c (db) iip3 (dbm) p1db (dbm) nf (db) low 401 8.7 25.4 10.6 9.8 high 252 7.4 21.2 10.9 10.2 rf = 2350mhz, low side lo, if = 190mhz, v cc = v ccif = 3.3v i sel i total (ma) g c (db) iip3 (dbm) p1db (dbm) nf (db) low 401 8.3 27.3 11.0 9.8 high 252 7.1 22.3 11.3 10.2 ltc5592 18 i sel v ccb 500 v cca 5592 f13 19 bias a bias b
ltc5592 18 5592f enable interface figure 13 shows a simplified schematic of the ena pin interface (enb is identical). to enable channel a, the ena voltage must be greater than 2.5v. if the enable function is not required, the enable pin can be connected directly to v cc . the voltage at the enable pin should never exceed the power supply voltage (v cc ) by more than 0.3v. if this should occur, the supply current could be sourced through the esd diode, potentially damaging the ic. applications information the enable pins must be pulled high or low. if left float- ing, the on/off state of the ic will be indeterminate. if a three-state condition can exist at the enable pins, then a pull-up or pull-down resistor must be used. supply voltage ramping fast ramping of the supply voltage can cause a current glitch in the internal esd protection circuits. depending on the supply inductance, this could result in a supply volt- age transient that exceeds the maximum rating. a supply voltage ramp time of greater than 1ms is recommended. spurious output levels mixer spurious output levels versus harmonics of the rf and lo are tabulated in tables 7 and 8 for frequencies up to 10ghz. the spur levels were measured on a standard evalution board using the test circuit shown in figure 1. the spur frequencies can be calculated using the follow- ing equation: f spur = (m ? f rf ) C (n ? f lo ) table 7. if output spur levels (dbc), high side lo (rf = 1950mhz, p rf = C3dbm, p lo = 0dbm, v cc = v ccif = 3.3v, t c = 25c) n m 0123456789 0 C C45.2 C46.9 C68.4 C70.8 C75.3 C72.0 C82.0 1 C51.0 0 C64.4 C54.5 C68.1 C66.3 C74.9 C72.2 2 C80.0 C80.9 C60.6 * C81.4 * * * * 3 * C83.5 * C75.8 * * * * * * 4 ********** 5 ********** 6 ********** 7 ********** 8 ********* 9 ******** 10 ******* *less than C90dbc table 8. if output spur levels (dbc), low side lo (rf = 2350mhz, p rf = C3dbm, p lo = 0dbm, v cc = v ccif = 3.3v, t c = 25c) n m 0123456789 0 C C44.9 C46.2 C69.9 C69.7 C78.0 C71.9 1 C50.7 0 C63.1 C45.7 C67.0 C68.9 C71.1 C72.2 * 2 C77.8 C78.7 C66.5 * C89.1 * * * * * 3 * * * C70.1 * * * * * * 4 * ********* 5 * ********* 6 * ********* 7 ********* 8 ******** 9 ******* 10 ****** *less than C90dbc figure 13. ena interface schematic ltc5592 17 ena 500 v cca 5592 f13 19 esd clamp
ltc5592 19 5592f information furnished by linear technology corporation is believed to be accurate and reliable. however, no responsibility is assumed for its use. linear technology corporation makes no representa- tion that the interconnection of its circuits as described herein will not infringe on existing patent rights. uh package 24-lead plastic qfn (5mm 5mm) (reference ltc dwg # 05-08-1747 rev a) 5.00 p 0.10 5.00 p 0.10 note: 1. drawing is not a jedec package outline 2. drawing not to scale 3. all dimensions are in millimeters 4. dimensions of exposed pad on bottom of package do not include mold flash. mold flash, if present, shall not exceed 0.20mm on any side 5. exposed pad shall be solder plated 6. shaded area is only a reference for pin 1 location on the top and bottom of package pin 1 top mark (note 6) 0.55 p 0.10 23 1 2 24 bottom viewexposed pad 3.25 ref 3.20 p 0.10 3.20 p 0.10 0.75 p 0.05 r = 0.150 typ 0.30 p 0.05 (uh24) qfn 0708 rev a 0.65 bsc 0.200 ref 0.00 C 0.05 0.75 p 0.05 3.25 ref 3.90 p 0.05 5.40 p 0.05 0.30 p 0.05 package outline 0.65 bsc recommended solder pad layout apply solder mask to areas that are not soldered pin 1 notch r = 0.30 typ or 0.35 s 45 o chamfer r = 0.05 typ 3.20 p 0.05 3.20 p 0.05 package description please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.
ltc5592 20 5592f linear technology corporation 1630 mccarthy blvd., milpitas, ca 95035-7417 (408) 432-1900 fax: (408) 434-0507 www.linear.com ? linear technology corporation 2011 lt 0911 ? printed in usa related parts typical application downconverting mixer with 470mhz if part number description comments infrastructure ltc5569 300mhz to 4ghz, 3.3v dual active downconverting mixer 2db gain, 26.7dbm iip3 and 11.7db nf at 1950mhz, 3.3v/180ma supply lt5557 400mhz to 3.8ghz, 3.3v downconverting mixer 2.9db gain, 24.7dbm iip3 and 11.7db nf at 1950mhz, 3.3v/82ma supply ltc6416 2ghz 16-bit adc buffer 40.25dbm oip3 to 300mhz, programmable fast recovery output clamping ltc6412 31db linear analog vga 35dbm oip3 at 240mhz, continuous gain range C14db to 17db ltc554x 600mhz to 4ghz downconverting mixer family 8db gain, >25dbm iip3, 10db nf, 3.3v/200ma supply lt5554 ultralow distort if digital vga 48dbm oip3 at 200mhz, 2db to 18db gain range, 0.125db gain steps lt5578 400mhz to 2.7ghz upconverting mixer 27dbm oip3 at 900mhz, 24.2dbm at 1.95ghz, integrated rf transformer lt5579 1.5ghz to 3.8ghz upconverting mixer 27.3dbm oip3 at 2.14ghz, nf = 9.9db, 3.3v supply, single-ended lo and rf ports rf power detectors ltc5581 6ghz low power rms detector 40db dynamic range, 1db accuracy over temperature, 1.5ma supply current ltc5582 10ghz rms power detector 40mhz to 10ghz, up to 57db dynamic range, 0.5db accuracy over temperature ltc5583 dual 6ghz rms power detector 40mhz to 6ghz, up to 60db dynamic range, >40db channel-to-channel isolation adcs ltc2285 14-bit, 125msps dual adc 72.4db snr, >88db sfdr, 790mw power consumption ltc2185 16-bit, 125msps dual adc ultralow power 74.8db snr, 185mw/channel power consumption ltc2242-12 12-bit, 250msps adc 65.4db snr, 78db sfdr, 740mw power consumption conversion gain, nf and iip3 vs rf frequency rf frequency (mhz) 2100 6 7 8 9 g c (db), ssb nf (db) iip3 (dbm) 11 12 13 14 2200 2400 5592 ta02b 10 2300 2500 2600 2700 23 25 27 29 24 26 28 22 21 t a = 25c if = 470mhz low side lo nf iip3 g c 4:1 tc4-1w-17ln+ ifa 50 82nh 82nh 22pf 1nf 1f 22pf 1f ltc5592 channel a channel b not shown 1 19 20 21 22 23 24 lo 50 17 18 16 15 2.2pf 4 3 rfa 50 v ccif 3.3v v cc 3.3v to channel b to channel b 22pf 2 ifgnda gnd ifa + ifa C ifba lo gnd i sel ena v cca rfa cta gnd gnd 5590 ta02 i sel ena 4.7pf


▲Up To Search▲   

 
Price & Availability of LTC5591

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X